Chemiekurs: Themen

1. Grundlagen

- 1.1. Sicherheit, Kursthemen
- 1.2. Materie, Stoffe, Atome
 - 1.2.1. Stoff und Materie; Was ist ein Modell?
 - 1.2.2. Atombau: Historisches: Kern-Hülle-Modell; Isotope, $t_{1/2}$
 - 1.2.3. Bohrsches Atommodell (EEK 1)
 - 1.2.4. Atommodell: Bohr-Sommerfeld (EEK 2)
 - 1.2.5. Pauli; Orbitalbesetzung
- 1.3. Teilchenmodell
 - 1.3.1. Grundlagen: Allgemeines Teilchenmodell
 - 1.3.2. Aggregatzustände
 - 1.3.3. Gasgleichung, Reaktionsmodell, Reaktionsgleichungen
 - 1.3.4. Modell der Auflösung einer Ionenverbindung im Wasser
- 1.4. Stöchiometrie: Größen, Einheiten, Berechnungen

2. Bindungstheorie

- 2.1. Bindungstyp und Stoffeigenschaft
- 2.2. Moleküle: Grundlagen
 - 2.2.1. Was ist ein Molekül? / Struktur-(Lewis-)Formeln (EEK 3)
 - 2.2.2. Kettenreaktion: $H_2 + Cl_2 \rightarrow 2HCl$ (evt. Vert. zur FSP)
 - 2.2.3. Mesomerie
 - 2.2.4. VEPA
 - 2.2.5. Elektronegativität / polare Moleküle (Wasser: evtl. Vert. zur FSP)
 - 2.2.6. Ladungsdichte polarer Moleküle / Herstellung von Salzsäure
- 2.3. Metalle
 - 2.3.1. Kristallstruktur, Verformbarkeit
 - 2.3.2. Raumausnutzung, Dichteberechnung
 - 2.3.3. Leitfähigkeit
- 2.4. Ionenverbindungen
 - 2.4.1. Vergleich mit Metallen
 - 2.4.2. Herstellung, Reaktionsgleichungen
 - 2.4.3. Stabilität (EEK 4) und Formeln
 - 2.4.4. Kubische Ionengitter: Dichteberechnungen
- 2.5. Elektronegativität und Stoffeigenschaften: ΔEN
- 2.6. Redoxreaktionen
 - 2.6.1. Oxidationszahlen, Koeffizienten
 - 2.6.2. Versuche zu Redoxreaktionen

3. Energetik

- 3.1. Aktivierungsenergie und Innere Energie
- 3.2. Volumenarbeit und Enthalpie
- 3.3. Endo- und exotherme Vorgänge
- 3.4. Reaktionswärme und Wärmekapazität

4. Reaktionsgeschwindigkeit

- 4.1. Definitionsgleichungen: Größen, Einheiten
- 4.2. v(t)-Funktion, Kenngrößen (k, c_{max}), Halbwertszeit
- 4.3. Einfluss der Stöchiometrie
- 4.4. Systemgeschwindigkeit
- 4.5. Konzentrations-Gesetz und Reaktionsordnung
 - 4.5.1. Experiment: Thiosulfat-Reaktion
 - 4.5.2. Reaktionsmechanismus /geschwindigekeitsbest. Schritt

5. Gleichgewichtstheorie

- 5.1. Revers. Stoffsys., Gleichgewichtsbed., dynam. Gleichgew.
- 5.2. Gleichgewichtskonstant K_c , Reaktionsquotient Q_R
- 5.3. Gleichgewichtsverschiebung
- 5.4. Homogene Gleichgewichte: Gase; K_p
- 5.5. Heterogene Gleichgewichte: (s/g), Reaktionsmodell

6. Säure-Base-Theorie

- 6.1. Vorwissen; pH
- 6.2. Arrhenius-Theorie versus Brönstedtheorie: Vergleich
 - 6.2.1. Konjugierte Säure-Base-Paare; Protonenübertragung
 - 6.2.2. Kenngrößen: pK_s, pK_b, pH, pOH, Dissoziationsgrad
- 6.3. Herstellung von Säuren und Basen

7. Elektrochemie

- 7.1. Spannungsreihe
- 7.2. Galvanische Zelle versus Elektrolysezelle
 - 7.2.1. Grundbegriffe, Daniel-Element (в списке, почему-то, стоит 2.2.1)
 - 7.2.2. Konzentrationskette, Nernstsche Gleichung