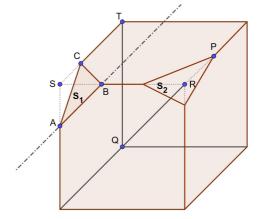
Studienkolleg des Ökumenischen Studienwerks e.V. für ausländische Studierende in Bochum staatlich genehmigt, Girondelle 80, 44799 Bochum

Schriftliche Prüfung zur Feststellung der Hochschulreife / Sommersemester 2022 Mathematik – Teil Vektorrechnung


Arbeitszeit: 75 Minuten Hilfsmittel: Wissenschaftlicher Taschenrechner

Familienname:	Vorname:

Aufgabe 4 (32 Punkte)

Von einem Würfel aus Stahl wurden die Ecken R(6|6|6) und S(6|0|6) abgeschnitten. (Siehe Abbildung.)

(Eine Längeneinheit entspricht einem Zentimeter. Die Abbildung ist nicht maßstabsgetreu.)

- a) Die Punkte A(6|0|3) und B(6|3|6) liegen auf einer Kante des bearbeiteten Würfels.
 - (i) Geben Sie eine Parametergleichung der Geraden g an, die die Punkte A und B enthält.
 - (ii) Prüfen Sie, ob der Punkt Z(6| -6| 0) auf der Geraden g aus Teilaufgabe a) (i) liegt.
- b) Die Schnittfläche S₁ liegt in der Ebene E₁, die durch die folgende Gleichung gegeben ist

$$E_1: \left(\vec{x} - \begin{pmatrix} 6 \\ 0 \\ 3 \end{pmatrix}\right) \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = 0.$$

- (i) Bestimmen Sie eine Koordinatengleichung von E_1 . Zeigen Sie, dass der Punkt C(3|0|6) in E_1 liegt.
- (ii) Geben Sie eine Koordinatengleichung einer Ebene an, die zu E₁ echt parallel ist. (Angabe der Gleichung ohne Rechenweg oder Begründung reicht.)
- (iii) Geben Sie die Parametergleichung einer Geraden an, die zu E₁ orthogonal ist. (Angabe der Gleichung ohne Rechenweg oder Begründung reicht.)
- (iv) Die Schnittfläche S_2 liegt in der Ebene E_2 . E_2 ist orthogonal zur Strecke \overline{QR} mit Q(0|0|0) und R(6|6|6) und enthält den Punkt P(4|6|6). Geben Sie eine Normalengleichung von E_2 an. (Angabe der Gleichung ohne Rechenweg oder Begründung reicht.)

Blatt bitte wenden!

Fortführung von Aufgabe 4

- c) Mit einem Laser wird ein Bohrkanal vom Punkt B(6|3|6) zum Punkt D gebohrt. Der Bohrkanal verläuft orthogonal zur Ebene E: $x_1-x_2=0$, in der auch der Punkt D liegt.
 - (i) Bestimmen Sie die Koordinaten von D. (Zur Kontrolle: D(4,5|4,5|6).)
 - (ii) Berechnen Sie die Länge des Bohrkanals BD.
 - (iii) Ermitteln Sie die Größe des Winkels zwischen dem Bohrkanal \overline{BD} und der Kante \overline{AB} des bearbeiteten Stahlwürfels. (Zur Erinnerung: A(6|0|3).)
 - (iv) Berechnen Sie den Abstand zwischen dem Eckpunkt A und der Ebene E: $\mathbf{x_1} \mathbf{x_2} = \mathbf{0}$.
- d) Nun wird ein Eckstück des Stahlwürfels abgeschnitten, das die Form einer dreiseitigen Pyramide besitzt. Die Pyramide hat die Eckpunkte L(2|0|6), M(0|0|4), N(0|2|6) und die Spitze T(0|0|6).

Berechnen Sie das Volumen des Eckstücks mithilfe des Spatprodukts.

Aufgabe 5 (8 Punkte)

Die Ebenen E₁ und E₂ sind durch die folgenden Gleichungen gegeben:

$$E_1: 2x_1+x_2+2x_3=3$$
 und $E_2: 3x_1+6x_2+2x_3=-2$.

Bestimmen Sie die Koordinatengleichungen aller Ebenen F, für die Folgendes gilt: Jeder Punkt P von F hat denselben Abstand zu E_1 wie zu E_2 , d.h. $d(P; E_1) = d(P; E_2)$.

Viel Erfolg! ⊙