Fachsprache und Übungen zur Vektorraumtheorie

Sei V ein Vektorraum und $M := \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ eine Teilmenge von V.

Dann heißt die Menge aller Linearkombinationen (LK) von M die lineare Hülle oder der Spann.

$$[M] := \operatorname{spann}(M) := \left\{ \sum_{k=0}^{n} r_k \cdot \tilde{v}_k \quad | \quad r_k \in \mathbb{R}, \tilde{v}_k \in M \right\}$$

Wenn die lineare Hülle von M den gesamten Vektorraum V ergibt, d.h. [M] = V, dann heißt M ein **Erzeugendensystem** (ES) des Vektorraumes V.

Beispiel: Die Menge M

$$M:=\left\{\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix},\begin{pmatrix}1\\1\end{pmatrix}\right\}$$

bildet ein Erzeugendensystem für den Vektorraum \mathbb{R}^2 .

Besteht das Erzeugendensystem nur aus **linear unabhängigen** Vektoren, dann heißt es eine **Basis**. Ein Vektorraum kann verschiedene, ja sogar unendlich viele, Basen haben.

Beispiel: Die Vektoren in B_1 und B_2 mit

$$B_1 := \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, \quad B_2 := \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\},$$

sind jeweils linear unabhängig. Also sind sowohl B_1 als auch B_2 eine Basis von \mathbb{R}^2 .

Zur Erinnerung: Die Vektoren $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ heißen **linear unabhängig**, wenn der Nullvektor $\vec{0}$ nur auf triviale Art darstellbar ist, d.h. alle Skalare haben den Wert Null.

$$\sum_{k=0}^{n} r_k \cdot \vec{v}_k = \vec{0} \quad \Longrightarrow \quad r_k = 0$$

Die Anzahl der Basisvektoren heißt **Dimension** des Vektorraumes.

Ein Vektorraum U, der eine echte Teilmenge des Vektorraums V ist, heißt Untervektorraum (UVR).

1. Basis in \mathbb{R}^2

Bilden die Vektoren eine Basis von \mathbb{R}^2 ?

$$a) \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 4 \end{pmatrix} \qquad b) \begin{pmatrix} 3 \\ 4 \end{pmatrix}, \begin{pmatrix} -15 \\ -20 \end{pmatrix}$$

Formulieren Sie Ihr Ergebnis auch unter Verwendung der obigen Fachbegriffe.

2. Basis und Dimension von UVR in \mathbb{R}^3

Bestimmen Sie eine Basis und eine Dimension der folgenden Vektorräume

$$V := \left\{ \begin{pmatrix} a \\ 0 \\ b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}, \qquad W := \left\{ \begin{pmatrix} a \\ 0 \\ a \end{pmatrix} \mid a \in \mathbb{R} \right\}$$

3. Vektorraum der (2x2)-Matrizen

Die 2x2-Matrizen bilden einen Vektorraum, wobei die Summe und das skalare Produkt komponentenweise definiert sind.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix}, \qquad r \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} r \cdot a & r \cdot b \\ r \cdot c & r \cdot d \end{pmatrix}$$

a) Geben Sie für

$$M := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$$

eine Basis und die Dimension an.

b) Wir betrachten jetzt den Untervektorraum

$$N := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad | \quad a+b+c+d = 0 \right\}$$

Geben Sie zu N eine Basis und eine Dimension an.

Begründen Sie, dass $\begin{pmatrix} 2 & 2 \\ 2 & -6 \end{pmatrix}$ ein Element von N ist. Stellen Sie die Matrix als LK der Basisvektoren dar.

4. Magische Quadrate

Eine quadratische Matrix heißt magisches Quadrat, wenn die Summen der Zahlen in jeder Spalte, jeder Zeile und jeder Diagonale gleich sind. Die magischen (3x3)-Quadrate bilden einen Vektorraum der Dimension drei. Sie dürfen das ohne Nachweis benutzen, aber warum ist das eigentlich so?

Zeigen Sie, dass

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

eine Basis dieses Vektorraumes ist.

Prüfen Sie, dass

$$\begin{pmatrix} 9 & 4 & 5 \\ 2 & 6 & 10 \\ 7 & 8 & 3 \end{pmatrix}$$

ein magisches Quadrat ist und stellen Sie diese Matrix als LK dieser Basis dar.

5. Raum der Polynome

Die Raum der quadratischen Polynome wird mit Π_2 bezeichnet. Zeigen Sie, dass

$$\mathcal{P} := \{1, 1+x, 1+x+x^2\}$$

eine Basis von Π_2 ist. Stellen Sie das Polynom $p(x) = x^2 + 2x + 3$ bezüglich der Basis \mathcal{P} dar. Geben Sie eine (einfachere) Basis und die Dimension an.

pk, 15. 11. 2024